Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 313: 126154, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31931425

RESUMO

The aim of this study was to develop a scalable crossflow diafiltration/ultrafiltration procedure for quinoa 11S globulin purification starting at the bench scale using Ultra15 centrifugal filter devices. The electrophoretic profiles of centrifugal ultrafiltration fractions showed a high heterogeneity in the bands, while crossflow ultrafiltration reduced the phenomena of protein sticking to the membrane, avoiding aggregate formation. In the crossflow protein concentration, flux decline curves were studied according to Hermia's fouling mechanisms and the resistance in a series model. High reversible resistance was related to external mechanisms due to complete blockage of the membrane surface followed by cake formation. The crossflow ultrafiltration was the most efficient technique for obtaining 57 kDa chenopodin isolate with higher processing capacity, purity and protein yield. The diafiltration/ultrafiltration process proved to be adequate and easy to handle to scale up the production of the 11S quinoa globulin.


Assuntos
Proteínas de Plantas/isolamento & purificação , Ultrafiltração/métodos , Centrifugação/métodos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Ultrafiltração/instrumentação
2.
ACS Biomater Sci Eng ; 5(11): 5968-5978, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405719

RESUMO

Protein functionalized cellulose fibrils were isolated from the tunic of Pyura chilensis and subsequently used to produce protein functionalized cellulose membranes. Bleached cellulose membranes were also obtained and used as reference material. FTIR and Raman spectroscopy demonstrated that the membranes are mostly constituted of cellulose along with the presence of residual proteins and pigments. Protein functionalized cellulose membranes were found to possess ∼3.1% of protein at their surface as measured by X-ray photoelectron spectroscopy. Powder X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis were used to identify and semiquantify the amount of residual sand grains present within the structure of the membranes. The presence of residual proteins was found not to significantly affect the tensile mechanical properties of the membranes. Streaming ζ-potential was used to assess surface charges of the membranes. Below pH 4, nonbleached cellulose membranes possessed highly negative surfaces charges and also significantly less negative surface charges at physiological pH when compared to bleached cellulose membranes. No significant difference was found with respect to growth kinetics of myoblasts at the surface of the membranes for cell culturing times of 48 and 72 h. After 48 h of culture, protein functionalized cellulose-based membranes that possess ∼3.1% of proteins at their surface (H1) were, however, found to promote higher cell density, cell spreading, and more orientated shape cell morphology when compared to the other cellulose-based membranes (H3 and B) evaluated in the present study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...